Физики измерили давление внутри протона

16.05.2018 Физики измерили давление внутри протона

Физики измерили давление внутри протона

Ученые из Лаборатории Джефферсона «просканировали» внутренности протона с помощью глубоко-виртуального комптоновского рассеяния, рассчитали на основании этих данных функцию распределения партонов и один из трех гравитационных формфакторов, а также оценили давление внутри частицы. Оказалось, что давление внутри протона достигает значений порядка 1035 паскалей, что превышает давление внутри самого плотного объекта во Вселенной — нейтронной звезды. Статья опубликована в Nature.

Протоны входят в состав атомного ядра и образуют бо́льшую часть привычной для нас материи, однако сами по себе элементарными частицами не являются. На самом деле каждый протон состоит из более мелких частиц (кварков), связанных друг с другом переносчиками сильного взаимодействия (глюонами). При больших энергиях и кварки, и глюоны ведут себя как отдельные частицы (партоны) — другими словами, если вы разгоните протон до околосветовой скорости и столкнете его с электроном, вы обнаружите, что электрон не рассеивается на протоне как на одной «целой» частице, но взаимодействует с каждым из партонов по отдельности.

Тем не менее, кварки не могут существовать в качестве свободных частиц, но обязательно связываются в адроны (к числу которых относится и протон) из-за конфайнмента. Грубо говоря, кварки внутри адрона можно представлять себе как шарики, связанные друг с другом струнами (или трубочками), в которых сосредоточен основной поток сильного поля. Когда кварки отдаляются друг от друга достаточно далеко, струна рвется, и в месте ее разрыва образуется пара кварк-антикварк, которые сразу же связываются с исходными частицами. С другой стороны, чем ближе кварки находятся друг к другу, тем слабее они взаимодействуют из-за асимптотической свободы. Это свойство отличает сильное взаимодействие от всех остальных типов взаимодействий, которые при сближении только усиливаются.

Чтобы «просканировать» внутреннюю структуру протона, физики сталкивают его с другими частицами, разогнанными до больших скоростей, измеряют углы их разлета и импульсы, а также сечение взаимодействия. Удобнее всего использовать для этого глубоко-виртуальное комптоновское рассеяние (deeply virtual Compton scattering, DVCS). Грубо говоря, обычное комптоновское рассеяние — это просто отражение света, то есть упругое рассеяние фотонов на частице. Упругость процесса означает, что суммарная кинетическая энергия участвующих в нем частиц сохраняется. В таком процессе протон ведет себя «как целое», поскольку энергии фотона не хватает, чтобы проникнуть в его внутренности. Однако в DVCS вместо обычного фотона используется виртуальный фотон, который рождается при взаимодействии налетающего на протон высокоэнергетического электрона. Энергия такого фотона получается очень большой, и при рассеянии он «чувствует» отдельные кварки, а потом превращается в обычный фотон. Происходит такой процесс нечасто, однако при большом числе столкновений нужную статистику вполне можно набрать. Ранее физики уже использовали DVCS, чтобы исследовать внутреннюю структуру протона.

Чтобы извлечь из данных DVCS зависимость давления от радиуса внутри протона, физики использовали следующую многоступенчатую схему. Во-первых, они связали обобщенное партонное распределение внутри протона с гравитационными формфакторами с помощью преобразования Меллина. Во-вторых, физики определили из данных DVCS комплексный комптоновский формфактор, связанный с такими наблюдаемыми величинами, как сечение рассеяния и асимметрия пучка. В-третьих, ученые выделили общую часть действительной и комплексной частей комптоновского формфактора и разложили ее по полиномам Гегенбауэра, которые являются обобщениями полиномов Лежандра и позволяют вывести гиперсферические функции, аналогичные сферическим функциям в трехмерном пространстве. Это позволило исследователям определить гравитационный формфактор d1(t), описывающий сдвиговые силы и давление внутри протона. Наконец, физики учли тот факт, что формфактор d1(t) связан с радиальным распределением давления p(r) с помощью бесселевого сферического интеграла, и рассчитали зависимость p(r).

В результате ученые обнаружили, что вблизи от центра протона давление положительно, то есть должно расталкивать кварки, однако при увеличении расстояния становится отрицательным и начинает связывать частицы. При этом пик отталкивания наступает на расстоянии около 0,6 фемтометров (6×10−13 метров) от центра протона и достигает величины порядка 1035 паскалей, то есть превышает давление внутри наиболее плотно упакованного объекта во Вселенной — нейтронной звезды. Минимальное значение давление принимает на расстоянии около 0,8 фемтометров.

Несмотря на то, что в следующем году истории изучения протона исполнится сто лет (протон был открыт в 1919 году Эрнестом Резерфордом), физики до сих пор не могут понять некоторые его свойства. В частности, в июне 2010 года физики столкнулись с так называемой «загадкой радиуса протона» — расхождением в результатах экспериментов по определению зарядового радиуса протона, в которых участвовали обычные атомы или мезоатомы. Это расхождение достигает четырех процентов, что ставит под сомнение «бесконечную точность» квантовой электродинамики. Впрочем, некоторые ученые считают, что его можно списать на какие-нибудь неучтенные эффекты, искажающие результаты наблюдений, — например, на квантовую интерференцию.

Дмитрий Трунин


Источник:  nplus1.ru

Возврат к списку